论文标题

关于牙齿序列和棱镜的应用

About proregular sequences and an application to prisms

论文作者

Schenzel, Peter

论文摘要

令$ \ usewandline {x} = x_1,\ ldots,x_k $表示通勤环$ r $的元素的有序序列。令$ m $为$ r $ - 模块。我们回想起$ \ upessline {x} $是$ m $ - 前提是Greenlees和May(见\ cite {[5]})和Lipman(见\ cite {[1]}),并表明这两个概念都是等量的。作为主要结果,我们证明了$ \ usepline {x} $的共同体表征,就$ m $ - 前牙性而言。这也意味着$ \ useverline {x} $是$ m $ - 呈$ m $ - $ m $ - 前牙。证明了局部全球性原则和弱质观。这用于关于Bhatt和Scholze引入的棱镜的结果(见\ cite {[3]})。

Let $\underline{x} = x_1,\ldots,x_k$ denote an ordered sequence of elements of a commutative ring $R$. Let $M$ be an $R$-module. We recall the two notions that $\underline{x}$ is $M$-proregular given by Greenlees and May (see \cite{[5]}) and Lipman (see \cite{[1]}) and show that both notions are equivalent. As a main result we prove a cohomological characterization for $\underline{x}$ to be $M$-proregular in terms of Čech homology. This implies also that $\underline{x}$ is $M$-weakly proregular if it is $M$-proregular. A local-global principle for proregularity and weakly proregularity is proved. This is used for a result about prisms as introduced by Bhatt and Scholze (see \cite{[3]}).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源