论文标题

轻量级图像超分辨率的剩余特征蒸馏网络

Residual Feature Distillation Network for Lightweight Image Super-Resolution

论文作者

Liu, Jie, Tang, Jie, Wu, Gangshan

论文摘要

单图超分辨率(SISR)的最新进展探讨了卷积神经网络(CNN)的力量,以实现更好的性能。尽管基于CNN的方法取得了巨大成功,但由于需要进行重型计算,将这些方法应用于边缘设备并不容易。为了解决这个问题,已经提出了各种快速和轻巧的CNN模型。信息蒸馏网络是最先进的方法之一,该方法采用了通道分裂操作来提取蒸馏功能。但是,尚不清楚该操作如何有助于设计有效的SISR模型。在本文中,我们提出了功能上等效的特征蒸馏连接(FDC),同时更轻巧和灵活。多亏了FDC,我们可以重新考虑信息多依次网络(IMDN),并提出一种称为残差特征蒸馏网络(RFDN)的轻巧,准确的SISR模型。 RFDN使用多个功能蒸馏连接来学习更多的判别特征表示。我们还建议一个浅层残留块(SRB)作为RFDN的主要构建块,以便网络可以从残留学习中受益最大,同时仍然足够轻巧。广泛的实验结果表明,在性能和模型复杂性方面,提出的RFDN针对最先进的方法实现了更好的权衡。此外,我们提出了一个增强的RFDN(E-RFDN),并在AIM 2020 AIM 2020高效的超分辨率挑战中赢得了第一名。代码将在https://github.com/njulj/rfdn上找到。

Recent advances in single image super-resolution (SISR) explored the power of convolutional neural network (CNN) to achieve a better performance. Despite the great success of CNN-based methods, it is not easy to apply these methods to edge devices due to the requirement of heavy computation. To solve this problem, various fast and lightweight CNN models have been proposed. The information distillation network is one of the state-of-the-art methods, which adopts the channel splitting operation to extract distilled features. However, it is not clear enough how this operation helps in the design of efficient SISR models. In this paper, we propose the feature distillation connection (FDC) that is functionally equivalent to the channel splitting operation while being more lightweight and flexible. Thanks to FDC, we can rethink the information multi-distillation network (IMDN) and propose a lightweight and accurate SISR model called residual feature distillation network (RFDN). RFDN uses multiple feature distillation connections to learn more discriminative feature representations. We also propose a shallow residual block (SRB) as the main building block of RFDN so that the network can benefit most from residual learning while still being lightweight enough. Extensive experimental results show that the proposed RFDN achieve a better trade-off against the state-of-the-art methods in terms of performance and model complexity. Moreover, we propose an enhanced RFDN (E-RFDN) and won the first place in the AIM 2020 efficient super-resolution challenge. Code will be available at https://github.com/njulj/RFDN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源