论文标题

在单向功能和Kolmogorov的复杂性上

On One-way Functions and Kolmogorov Complexity

论文作者

Liu, Yanyi, Pass, Rafael

论文摘要

我们证明,计算理论中两个基本问题的等效性。对于每个多项式$ t(n)\ geq(1+ \ varepsilon)n,\ varepsilon> 0 $,以下是等效的: - 单向函数存在(反过来相当于存在安全的私钥加密方案,数字签名,伪随机生成器,伪随机函数,承诺方案等); - $ t $ - 时间有限的kolmogorov复杂性,$ k^t $是温和的平均水平(即,存在一个多项式$ p(n)> 0 $,因此没有PPT算法可以计算$ k^t $,以比$ 1- \ frac {1}} $ n $ n $ n $ n $ k^t $。 在此过程中,我们提出了第一个自然且经过深思熟虑的计算问题,这些问题表征了中央私钥原语和密码学方案的可行性。

We prove that the equivalence of two fundamental problems in the theory of computing. For every polynomial $t(n)\geq (1+\varepsilon)n, \varepsilon>0$, the following are equivalent: - One-way functions exists (which in turn is equivalent to the existence of secure private-key encryption schemes, digital signatures, pseudorandom generators, pseudorandom functions, commitment schemes, and more); - $t$-time bounded Kolmogorov Complexity, $K^t$, is mildly hard-on-average (i.e., there exists a polynomial $p(n)>0$ such that no PPT algorithm can compute $K^t$, for more than a $1-\frac{1}{p(n)}$ fraction of $n$-bit strings). In doing so, we present the first natural, and well-studied, computational problem characterizing the feasibility of the central private-key primitives and protocols in Cryptography.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源