论文标题

Anchibert:一种用于古老的Chin语言理解和产生的预训练模型

AnchiBERT: A Pre-Trained Model for Ancient ChineseLanguage Understanding and Generation

论文作者

Tian, Huishuang, Yang, Kexin, Liu, Dayiheng, Lv, Jiancheng

论文摘要

古代中国人是中国文化的本质。古代中国领域有几种自然语言处理任务,例如古代现代的中国翻译,诗歌产生和对联。以前的研究通常使用深层依赖并联数据的监督模型。但是,很难获得古代中国人的大规模平行数据。为了充分利用更容易获得的单语言中国古代语料库,我们发布了基于伯特(Bert)建筑的预先培训的语言模型,该模型接受了大规模古代中国语料库的培训。我们评估了Anchibert的语言理解和发电任务,包括诗歌分类,古代现代的中文翻译,诗歌产生和对联的产生。实验结果表明,在所有情况下,Anchibert的表现都优于BERT以及未经预告的模型,并实现了最先进的结果。

Ancient Chinese is the essence of Chinese culture. There are several natural language processing tasks of ancient Chinese domain, such as ancient-modern Chinese translation, poem generation, and couplet generation. Previous studies usually use the supervised models which deeply rely on parallel data. However, it is difficult to obtain large-scale parallel data of ancient Chinese. In order to make full use of the more easily available monolingual ancient Chinese corpora, we release AnchiBERT, a pre-trained language model based on the architecture of BERT, which is trained on large-scale ancient Chinese corpora. We evaluate AnchiBERT on both language understanding and generation tasks, including poem classification, ancient-modern Chinese translation, poem generation, and couplet generation. The experimental results show that AnchiBERT outperforms BERT as well as the non-pretrained models and achieves state-of-the-art results in all cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源