论文标题
FTN:前景引导以纹理为中心的人重新识别
FTN: Foreground-Guided Texture-Focused Person Re-Identification
论文作者
论文摘要
人员重新识别(RE-ID)是一项艰巨的任务,因为人们通常处于不同的背景。最新的重新ID方法对人的歧视性学习平等地对待前景和背景信息,但是当不同的人处于相似背景或同一个人处于不同背景时,可以轻松导致潜在的错误警报问题。在本文中,我们为Re-ID提出了一个以纹理为中心的纹理网络(FTN),该网络可以削弱无关背景的表示,并以端到端的方式突出显示与人相关的属性。 FTN由用于重新ID任务的语义编码器(S-ENC)和一个紧凑的前景注意模块(CFA),以及以纹理为中心的解码器(TF-DEC)进行重建任务。特别是,我们为TF-DEC构建了一个前景引导的半监督学习策略,因为重建的地面真相只是高斯面膜加权的FTN输入和CFA产生的注意力掩码。此外,引入了新的梯度损失,以鼓励网络挖掘输入和重建输出之间的纹理一致性。我们的FTN是在三个常用数据集Market1501,Cuhk03和MSMT17上进行计算高效且广泛的实验,这表明该建议的方法对最先进的方法有利。
Person re-identification (Re-ID) is a challenging task as persons are often in different backgrounds. Most recent Re-ID methods treat the foreground and background information equally for person discriminative learning, but can easily lead to potential false alarm problems when different persons are in similar backgrounds or the same person is in different backgrounds. In this paper, we propose a Foreground-Guided Texture-Focused Network (FTN) for Re-ID, which can weaken the representation of unrelated background and highlight the attributes person-related in an end-to-end manner. FTN consists of a semantic encoder (S-Enc) and a compact foreground attention module (CFA) for Re-ID task, and a texture-focused decoder (TF-Dec) for reconstruction task. Particularly, we build a foreground-guided semi-supervised learning strategy for TF-Dec because the reconstructed ground-truths are only the inputs of FTN weighted by the Gaussian mask and the attention mask generated by CFA. Moreover, a new gradient loss is introduced to encourage the network to mine the texture consistency between the inputs and the reconstructed outputs. Our FTN is computationally efficient and extensive experiments on three commonly used datasets Market1501, CUHK03 and MSMT17 demonstrate that the proposed method performs favorably against the state-of-the-art methods.