论文标题

网络可视化的在线和不均匀的时期固定方法

An Online and Nonuniform Timeslicing Method for Network Visualisation

论文作者

Ponciano, Jean R., Linhares, Claudio D. G., Faria, Elaine R., Travencolo, Bruno A. N.

论文摘要

对时间网络的视觉分析包括一种理解网络动态,促进模式,异常和其他网络属性的有效方法,从而导致了快速的决策。但是,现实世界网络中的数据量可能会导致由于边缘重叠而引起的具有高视觉混乱的布局。这在所谓的流媒体网络中尤其重要,其中边缘连续到达(在线)和非平稳分布。可以操纵所有三个网络维度,即节点,边缘和时间,以减少这种混乱并提高可读性。本文介绍了一种在线和不均匀的时期固定方法,因此考虑了基础网络结构并解决流网络分析。我们使用两个现实世界网络进行了实验,以将我们的方法与统一和不均匀的时空策略进行比较。结果表明,我们的方法会自动选择有效的时代,从而有效地减少了随着事件爆发的时期。结果,基于全球时间模式的识别的决策变得更快,更可靠。

Visual analysis of temporal networks comprises an effective way to understand the network dynamics, facilitating the identification of patterns, anomalies, and other network properties, thus resulting in fast decision making. The amount of data in real-world networks, however, may result in a layout with high visual clutter due to edge overlapping. This is particularly relevant in the so-called streaming networks, in which edges are continuously arriving (online) and in non-stationary distribution. All three network dimensions, namely node, edge, and time, can be manipulated to reduce such clutter and improve readability. This paper presents an online and nonuniform timeslicing method, thus considering the underlying network structure and addressing streaming network analyses. We conducted experiments using two real-world networks to compare our method against uniform and nonuniform timeslicing strategies. The results show that our method automatically selects timeslices that effectively reduce visual clutter in periods with bursts of events. As a consequence, decision making based on the identification of global temporal patterns becomes faster and more reliable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源