论文标题

高维贝叶斯网络分类,具有网络全本网本收缩率

High Dimensional Bayesian Network Classification with Network Global-Local Shrinkage Priors

论文作者

Guha, Sharmistha, Rodriguez, Abel

论文摘要

本文提出了一个新颖的贝叶斯分类框架,用于带有标记节点的网络。尽管有关网络数据统计建模的文献通常涉及对单个网络的分析,但在包括脑成像研究在内的几种生物应用中,复杂数据的最新出现,提出了为受试者设计网络分类器的必要性。本文考虑了大脑连接组研究的应用程序,在该应用程序中,总体目标是根据他们的大脑网络数据将受试者分为两个单独的组,以及识别有影响力的感兴趣区域(ROIS)(称为节点)。现有方法要么将所有边缘权重视为长向量,要么通过一些摘要措施总结网络信息。这两种方法都忽略了完整的网络结构,可能会导致小样本中的理想推断,并且旨在识别重要的网络节点。我们提出了一个新型的二元逻辑回归框架,将网络作为预测变量和二进制响应,使用新型的全球本地收缩率先验进行建模网络预测器系数。该框架能够准确地检测到影响分类的网络中的节点和边缘。我们的框架是使用有效的马尔可夫链蒙特卡洛算法实施的。从理论上讲,当网络边缘的数量增长快于样本量时,我们对所提出的框架显示渐近的最佳分类。通过广泛的仿真研究和大脑连接数据的分析,该框架得到了经验验证。

This article proposes a novel Bayesian classification framework for networks with labeled nodes. While literature on statistical modeling of network data typically involves analysis of a single network, the recent emergence of complex data in several biological applications, including brain imaging studies, presents a need to devise a network classifier for subjects. This article considers an application from a brain connectome study, where the overarching goal is to classify subjects into two separate groups based on their brain network data, along with identifying influential regions of interest (ROIs) (referred to as nodes). Existing approaches either treat all edge weights as a long vector or summarize the network information with a few summary measures. Both these approaches ignore the full network structure, may lead to less desirable inference in small samples and are not designed to identify significant network nodes. We propose a novel binary logistic regression framework with the network as the predictor and a binary response, the network predictor coefficient being modeled using a novel class global-local shrinkage priors. The framework is able to accurately detect nodes and edges in the network influencing the classification. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Theoretically, we show asymptotically optimal classification for the proposed framework when the number of network edges grows faster than the sample size. The framework is empirically validated by extensive simulation studies and analysis of a brain connectome data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源