论文标题

具有可控的微结构参数的3D内硅内spongiosa的生成建模

Generative Modelling of 3D in-silico Spongiosa with Controllable Micro-Structural Parameters

论文作者

Iarussi, Emmanuel, Thomsen, Felix, Delrieux, Claudio

论文摘要

椎骨微结构的研究通常需要经过昂贵的程序,以便通过研究的特定病理进行真实骨骼的物理扫描,因为尚无可用的方法来在核中产生逼真的骨结构。在这里,我们建议应用生成对抗网络(GAN)的最新进展来开发这种方法。我们改编了样式转移技术,这些技术已在其他情况下主要用于其他情况,以便在图像对之间传输样式,同时保留其信息内容。第一步,我们使用Wasserstein物镜和梯度惩罚(PWGAN-GP)以渐进的方式训练了体积生成模型,以在核中创建逼真的骨骼结构斑块。该训练组包含7660个纯粹的海绵样品,来自十二个人椎骨(T12或L1),各向同性分辨率为164UM,并用高分辨率的外围定量CT(SCANCO XCT)进行扫描。训练后,我们通过优化学习的潜在空间中的向量Z生成了具有量身定制的微结构特性的新样品。为了解决此优化问题,我们制定了一个可区分的目标函数,该函数可导致有效样本,同时使用目标3D属性(样式)损害外观(内容)。学习的潜在空间的属性有效地匹配了数据分布。此外,我们能够仅基于微观结构参数的预期变化而模拟骨质疏松疗法的恶化或治疗作用后所产生的骨结构。我们的方法允许生成几乎无限数量的逼真的骨微结构的斑块,从而可能用于开发骨骼生物标志物并事先模拟骨治疗。

Research in vertebral bone micro-structure generally requires costly procedures to obtain physical scans of real bone with a specific pathology under study, since no methods are available yet to generate realistic bone structures in-silico. Here we propose to apply recent advances in generative adversarial networks (GANs) to develop such a method. We adapted style-transfer techniques, which have been largely used in other contexts, in order to transfer style between image pairs while preserving its informational content. In a first step, we trained a volumetric generative model in a progressive manner using a Wasserstein objective and gradient penalty (PWGAN-GP) to create patches of realistic bone structure in-silico. The training set contained 7660 purely spongeous bone samples from twelve human vertebrae (T12 or L1) with isotropic resolution of 164um and scanned with a high resolution peripheral quantitative CT (Scanco XCT). After training, we generated new samples with tailored micro-structure properties by optimizing a vector z in the learned latent space. To solve this optimization problem, we formulated a differentiable goal function that leads to valid samples while compromising the appearance (content) with target 3D properties (style). Properties of the learned latent space effectively matched the data distribution. Furthermore, we were able to simulate the resulting bone structure after deterioration or treatment effects of osteoporosis therapies based only on expected changes of micro-structural parameters. Our method allows to generate a virtually infinite number of patches of realistic bone micro-structure, and thereby likely serves for the development of bone-biomarkers and to simulate bone therapies in advance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源