论文标题

与远程抗铁磁相互作用的无序量子自旋链的纠缠特性

Entanglement Properties of Disordered Quantum Spin Chains with Long-Range Antiferromagnetic Interactions

论文作者

Mohdeb, Youcef, Vahedi, Javad, Moure, N., Roshani, A., Lee, Hyun-Yong, Bhatt, Ravindra N., Kettemann, Stefan, Haas, Stephan

论文摘要

我们检查了带有随机的长距离耦合的量子自旋链中的并发和纠缠熵,并在空间上与幂律指数$α$腐烂。使用强障碍重新归一化组(SDRG)技术,我们通过对主方程的分析解决方案找到一个强障碍固定点,其特征是耦合的固定点分布具有有限的动力学指数,该指数始终描述了该系统$α> 1/2 $。 SDRG方法的数值实现产生了平均并发的功率定律空间衰减,这也可以通过精确的数值对角线化来证实。但是,我们发现最低的SDRG方法不足以获得并发的典型值。因此,我们实施了一个校正方案,该方案使我们能够获得随机单线状态的领先顺序更正。这种方法产生了同意的典型值的幂律空间衰减,我们通过校正的数值实现和分析来得出。接下来,使用数值SDRG,发现纠缠熵(EE)对所有$α$都对数增强,对应于具有有效中央电荷的关键行为$ c = {\ rm ln} 2 $,独立于$α$。这是通过分析推导证实的。使用数值精确的对角(ED),我们确认了EE的对数增强和对$α$的弱依赖性。对于各种距离$ l $,EE适合至关重要的行为,中央充电接近$ c = 1 $,与清洁的haldane-shastry模型相同,具有$α= 2 $的功率-LA交互。与该观察结果一致,我们发现同意显示了功率定律的衰减,尽管其功率指数较小,而不是SDRG所获得的。

We examine the concurrence and entanglement entropy in quantum spin chains with random long-range couplings, spatially decaying with a power-law exponent $α$. Using the strong disorder renormalization group (SDRG) technique, we find by analytical solution of the master equation a strong disorder fixed point, characterized by a fixed point distribution of the couplings with a finite dynamical exponent, which describes the system consistently in the regime $α> 1/2$. A numerical implementation of the SDRG method yields a power law spatial decay of the average concurrence, which is also confirmed by exact numerical diagonalization. However, we find that the lowest-order SDRG approach is not sufficient to obtain the typical value of the concurrence. We therefore implement a correction scheme which allows us to obtain the leading order corrections to the random singlet state. This approach yields a power-law spatial decay of the typical value of the concurrence, which we derive both by a numerical implementation of the corrections and by analytics. Next, using numerical SDRG, the entanglement entropy (EE) is found to be logarithmically enhanced for all $α$, corresponding to a critical behavior with an effective central charge $c = {\rm ln} 2$, independent of $α$. This is confirmed by an analytical derivation. Using numerical exact diagonalization (ED), we confirm the logarithmic enhancement of the EE and a weak dependence on $α$. For a wide range of distances $l$, the EE fits a critical behavior with a central charge close to $c=1$, which is the same as for the clean Haldane-Shastry model with a power-la-decaying interaction with $α=2$. Consistent with this observation, we find using ED that the concurrence shows power law decay, albeit with smaller power exponents than obtained by SDRG.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源