论文标题
通过最佳对照和渐近分析,非局部相位场模型的参数鉴定,用于肿瘤生长
Parameter identification for nonlocal phase field models for tumor growth via optimal control and asymptotic analysis
论文作者
论文摘要
我们介绍了来自最近引入的肿瘤生长模型的耦合非局部Cahn-Hilliard-hilliard-hilliard-reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction-Reaction识别问题的问题。通过依靠PDE系统最佳控制理论的技术来研究识别相关参数的逆问题。要识别的参数扮演控制的角色,并引入了跟踪类型的合适成本功能,以说明某些对参数和控件本身的先验知识之间的差异。对几类模型进行了分析,每种模型都取决于在原始系统上执行的特定放松(抛物线或粘性类型)。在两维情况下,在完全放松的系统上获得了一阶必要的最佳条件。然后,通过渐近参数,通过显示相应的伴随系统的收敛性和最小化问题,随着每个放松系数都会消失,可以通过渐近参数的方式解决最佳控制问题。这允许在具有物理相关的双孔电势的情况下为原始PDE系统获得所需的必要最佳条件,以解决参数识别问题。
We introduce the problem of parameter identification for a coupled nonlocal Cahn-Hilliard-reaction-diffusion PDE system stemming from a recently introduced tumor growth model. The inverse problem of identifying relevant parameters is studied here by relying on techniques from optimal control theory of PDE systems. The parameters to be identified play the role of controls, and a suitable cost functional of tracking-type is introduced to account for the discrepancy between some a priori knowledge of the parameters and the controls themselves. The analysis is carried out for several classes of models, each one depending on a specific relaxation (of parabolic or viscous type) performed on the original system. First-order necessary optimality conditions are obtained on the fully relaxed system, in both the two and three-dimensional case. Then, the optimal control problem on the non-relaxed models is tackled by means of asymptotic arguments, by showing convergence of the respective adjoint systems and the minimization problems as each one of the relaxing coefficients vanishes. This allows obtaining the desired necessary optimality conditions, hence to solve the parameter identification problem, for the original PDE system in case of physically relevant double-well potentials.