论文标题

地形材料识别的差异观点

Differential Viewpoints for Ground Terrain Material Recognition

论文作者

Xue, Jia, Zhang, Hang, Nishino, Ko, Dana, Kristin J.

论文摘要

基础材料识别的计算表面建模已从使用LAB内控制的辐射测量测量到基于Internet键入的单视图图像的基于图像的表示形式过渡到基于图像的表示形式。我们采用中间地面方法进行材料识别,该方法利用了丰富的放射线线索和灵活的图像捕获。一个关键的概念是差分成像成像,其中图像捕获中的小角度变化使角度梯度特征具有增强的外观表示,从而改善了识别。我们在室外场景(GTOS)数据库中构建了一个大规模的材料数据库,地面地形,以支持诸如自主驾驶和机器人导航等应用的地形识别。该数据库由30,000多个图像组成,涵盖了40种室外地面地形,在不同的天气和照明条件下。我们开发了一种称为纹理编码的角网络(Tean)的新颖方法,该方法结合了RGB信息的深度编码池和差分角图像,以完全利用此大数据集的角度梯度特征。借助这种新颖的网络结构,我们提取了在其外观的角度和空间梯度中编码的材料的特征。我们的结果表明,Tean实现了超过单视图性能和标准(非差异/大角度抽样)多视图性能的识别性能。

Computational surface modeling that underlies material recognition has transitioned from reflectance modeling using in-lab controlled radiometric measurements to image-based representations based on internet-mined single-view images captured in the scene. We take a middle-ground approach for material recognition that takes advantage of both rich radiometric cues and flexible image capture. A key concept is differential angular imaging, where small angular variations in image capture enables angular-gradient features for an enhanced appearance representation that improves recognition. We build a large-scale material database, Ground Terrain in Outdoor Scenes (GTOS) database, to support ground terrain recognition for applications such as autonomous driving and robot navigation. The database consists of over 30,000 images covering 40 classes of outdoor ground terrain under varying weather and lighting conditions. We develop a novel approach for material recognition called texture-encoded angular network (TEAN) that combines deep encoding pooling of RGB information and differential angular images for angular-gradient features to fully leverage this large dataset. With this novel network architecture, we extract characteristics of materials encoded in the angular and spatial gradients of their appearance. Our results show that TEAN achieves recognition performance that surpasses single view performance and standard (non-differential/large-angle sampling) multiview performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源