论文标题

主张Hecke类别是一种单体colimit

The affine Hecke category is a monoidal colimit

论文作者

Tao, James, Travkin, Roman

论文摘要

令$ g $为半简单连接的代数组,在代数封闭的特征零字段上。我们证明,与$ g $的循环组相关的Aggine Hecke类别相当于colimit,在$ \ infty $ - 单类稳定$ \ infty $类别中评估的有限型hecke hecke hecke子类别与标准帕拉赫里奇亚基相关联。主要成分是由(足够好)分类类别索引的colimit的归纳特征。我们的方法非常通用,可用于证明许多类似的“ colimit定理”,例如对于循环组上的D模块。

Let $G$ be a semisimple simply-connected algebraic group over an algebraically closed field of characteristic zero. We prove that the affine Hecke category associated to the loop group of $G$ is equivalent to the colimit, evaluated in the $\infty$-category of monoidal stable $\infty$-categories, of the finite type Hecke subcategories associated to standard parahoric subgroups. The main ingredient is an inductive characterization of colimits indexed by (sufficiently nice) bistratified categories. Our method is very general and can be used to prove a number of analogous 'colimit theorems,' e.g. for D-modules on the loop group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源