论文标题
人口协议中的戒指的时间最佳的自我稳定的领导者选举
Time-Optimal Self-Stabilizing Leader Election on Rings in Population Protocols
论文作者
论文摘要
我们在人口协议模型中针对定向环提出了一个自动化的领导者选举协议。鉴于人口尺寸$ n $的上限$ n $,该协议选出了从任何配置开始的$ O(nn)$预期步骤中的独特领导者,并使用$ o(n)$状态。如果给定的上限$ n $渐近,即$ n = o(n)$,则此收敛时间是最佳的。
We propose a self-stabilizing leader election protocol on directed rings in the model of population protocols. Given an upper bound $N$ on the population size $n$, the proposed protocol elects a unique leader within $O(nN)$ expected steps starting from any configuration and uses $O(N)$ states. This convergence time is optimal if a given upper bound $N$ is asymptotically tight, i.e., $N=O(n)$.