论文标题
观察和建模驱动固态陶瓷合成的顺序成对反应
Observing and modeling the sequential pairwise reactions that drive solid-state ceramic synthesis
论文作者
论文摘要
粉末前体的固态合成是通往晚期多组分陶瓷材料的主要加工途径。设计陶瓷合成路线通常是一种费力的试验过程,因为粉末前体的异质混合物通常通过一系列复杂的反应中间体演化。在这里,我们表明,从多个前体的相位演变可以建模为一系列成对界面反应的序列,并具有可以使用从头算法进行有效计算的热力学驱动力。利用经典的高温超导体YBA $ _2 $ _2 $ _3 $ _3 $ o $ _ {6+x} $(YBCO)作为代表性系统,我们合理地将使用BAO $ _2 $ _2 $ _2 $ REDIRECTS相位进化的常见的Baco $ _3 $ PREPRECH替换了普通的Baco $ _3 $ PRECORTOR。我们的模型是从原位X射线衍射和原位显微镜观测值中验证的,该观测值显示了仅30分钟内BAO $ _2 $的快速YBCO组。通过将热力学建模与原位表征相结合,我们引入了一个新的可计算框架,以解释并最终设计成复杂陶瓷材料的合成途径。
Solid-state synthesis from powder precursors is the primary processing route to advanced multicomponent ceramic materials. Designing ceramic synthesis routes is usually a laborious, trial-and-error process, as heterogeneous mixtures of powder precursors often evolve through a complicated series of reaction intermediates. Here, we show that phase evolution from multiple precursors can be modeled as a sequence of pairwise interfacial reactions, with thermodynamic driving forces that can be efficiently calculated using ab initio methods. Using the synthesis of the classic high-temperature superconductor YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) as a representative system, we rationalize how replacing the common BaCO$_3$ precursor with BaO$_2$ redirects phase evolution through a kinetically-facile pathway. Our model is validated from in situ X-ray diffraction and in situ microscopy observations, which show rapid YBCO formation from BaO$_2$ in only 30 minutes. By combining thermodynamic modeling with in situ characterization, we introduce a new computable framework to interpret and ultimately design synthesis pathways to complex ceramic materials.