论文标题

分层贝叶斯引导程序用于异质治疗效果估计

Hierarchical Bayesian Bootstrap for Heterogeneous Treatment Effect Estimation

论文作者

Oganisian, Arman, Mitra, Nandita, Roy, Jason

论文摘要

因果推断的主要重点是估计异质平均治疗效应(HTE) - 层次中的平均治疗效果,例如另一个感兴趣的变量,例如生物标志物,教育或年龄层。推理涉及估计层特异性回归,并将其整合在该层中混杂因子的分布上 - 必须估算。标准实践涉及独立估算这些层特异性混杂子分布(例如,通过经验分布或鲁宾的贝叶斯引导程序),对于稀疏的人群中的稀疏地层而言,这变得有问题,几乎没有观察到的混杂矢量。在本文中,我们在特定于层的混杂分布上开发了非参数层次贝叶斯引导(HBB)以进行HTE估计。 HBB部分汇集了特定于层的分布,从而在稀疏性时允许在层次上进行混杂信息的原则性借贷。我们表明,HBB下的后推断可以比标准边缘化方法产生效率提高,同时避免对混杂因子分布进行强有力的参数假设。我们使用我们的方法来估计各种癌症类型的质子与光子化学放疗的不良事件风险。

A major focus of causal inference is the estimation of heterogeneous average treatment effects (HTE) - average treatment effects within strata of another variable of interest such as levels of a biomarker, education, or age strata. Inference involves estimating a stratum-specific regression and integrating it over the distribution of confounders in that stratum - which itself must be estimated. Standard practice involves estimating these stratum-specific confounder distributions independently (e.g. via the empirical distribution or Rubin's Bayesian bootstrap), which becomes problematic for sparsely populated strata with few observed confounder vectors. In this paper, we develop a nonparametric hierarchical Bayesian bootstrap (HBB) prior over the stratum-specific confounder distributions for HTE estimation. The HBB partially pools the stratum-specific distributions, thereby allowing principled borrowing of confounder information across strata when sparsity is a concern. We show that posterior inference under the HBB can yield efficiency gains over standard marginalization approaches while avoiding strong parametric assumptions about the confounder distribution. We use our approach to estimate the adverse event risk of proton versus photon chemoradiotherapy across various cancer types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源