论文标题
在中性条件下,数据驱动的风力涡轮机唤醒了封闭
Data-driven RANS closures for wind turbine wakes under neutral conditions
论文作者
论文摘要
风网流物理学建模的最先进是大型涡流模拟(LES),它可以准确地预测最相关的物理学,但需要广泛的计算资源。下一效率模型类型是雷诺平均的Navier-Stokes(RANS),它们是两个较便宜的数量级,但仅解析平均数量和模拟湍流的效果。他们通常无法准确预测关键效应,例如唤醒恢复率。定制租用为风农用唤醒而设计的封口存在,但到目前为止还没有很好地概括:有很大的改进空间。在本文中,我们介绍了采用系统数据驱动方法的第一步,以在风能环境中推导新的架模型。时间平均的LES数据用作地面真相,我们首先得出了湍流各向异性张量和湍流动能(T.K.E.)生产的最佳矫正场。这些字段注射到RANS方程中(带有基线$ K-ε$模型)时,这些字段将重现LES均值定量。接下来,我们使用确定性的符号回归方法从这些纠正域中构建自定义射击,以推断代数校正作为(已解决)平均流量的函数。结果是按培训数据定制的新命令。在中性大气条件下,该方法的潜力是在多涡轮上的中性大气条件下以风键尺度为单位的。与基线闭合相比,对于平均速度和T.K.E.的基线闭合,结果显示出明显改善的预测。字段。
The state-of-the-art in wind-farm flow-physics modeling is Large Eddy Simulation (LES) which makes accurate predictions of most relevant physics, but requires extensive computational resources. The next-fidelity model types are Reynolds-Averaged Navier-Stokes (RANS) which are two orders of magnitude cheaper, but resolve only mean quantities and model the effect of turbulence. They often fail to accurately predict key effects, such as the wake recovery rate. Custom RANS closures designed for wind-farm wakes exist, but so far do not generalize well: there is substantial room for improvement. In this article we present the first steps towards a systematic data-driven approach to deriving new RANS models in the wind-energy setting. Time-averaged LES data is used as ground-truth, and we first derive optimal corrective fields for the turbulence anisotropy tensor and turbulence kinetic energy (t.k.e.) production. These fields, when injected into the RANS equations (with a baseline $k-ε$ model) reproduce the LES mean-quantities. Next we build a custom RANS closure from these corrective fields, using a deterministic symbolic regression method to infer algebraic correction as a function of the (resolved) mean-flow. The result is a new RANS closure, customized to the training data. The potential of the approach is demonstrated under neutral atmospheric conditions for multi-turbine constellations at wind-tunnel scale. The results show significantly improved predictions compared to the baseline closure, for both mean velocity and the t.k.e. fields.