论文标题

GHMERTI在Semeval-2019任务6:一种基于词语和角色的进攻语言识别方法

Ghmerti at SemEval-2019 Task 6: A Deep Word- and Character-based Approach to Offensive Language Identification

论文作者

Doostmohammadi, Ehsan, Sameti, Hossein, Saffar, Ali

论文摘要

本文介绍了GHMERTI团队在2019年Semeval共享任务的子任务A和B提交的模型。《进攻》解决了在三个子任务中识别和分类社交媒体中进攻性语言的问题;是否有攻击性(子任务A),是否针对个人,一个组或其他实体(子任务)(子任务C)(子任务C)。提出的方法包括角色级卷积神经网络,单词级复发性神经网络以及一些预处理。提议的子任务A所实现的性能为77.93%的宏观平均F1得分。

This paper presents the models submitted by Ghmerti team for subtasks A and B of the OffensEval shared task at SemEval 2019. OffensEval addresses the problem of identifying and categorizing offensive language in social media in three subtasks; whether or not a content is offensive (subtask A), whether it is targeted (subtask B) towards an individual, a group, or other entities (subtask C). The proposed approach includes character-level Convolutional Neural Network, word-level Recurrent Neural Network, and some preprocessing. The performance achieved by the proposed model for subtask A is 77.93% macro-averaged F1-score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源