论文标题
在$ L_2 $中取消离散化
On sampling discretization in $L_2$
论文作者
论文摘要
我们证明了来自有限维度子空间的函数平方规范的抽样离散定理,满足了尼古尔的不平等,并具有上限的上限,该界限是在子空间维度的订单的上方数量
We prove a sampling discretization theorem for the square norm of functions from a finite dimensional subspace satisfying Nikol'skii's inequality with an upper bound on the number of sampling points of the order of the dimension of the subspace