论文标题

正交性限制在改善深网性属性中的作用以进行图像分类

Role of Orthogonality Constraints in Improving Properties of Deep Networks for Image Classification

论文作者

Choi, Hongjun, Som, Anirudh, Turaga, Pavan

论文摘要

已知采用分类跨凝性损失的标准深度学习模型在图像分类任务上表现良好。但是,因此获得的许多标准模型通常都表现出诸如冗余性,低解释性和校准差的问题。最近出现了一系列作品,试图通过提议使用新的正则化功能来解决这些挑战中的一些挑战。在本文中,我们提出了一些令人惊讶的发现,这些发现是从探索简单正交性约束的作用中出现的,作为在成像中施加物理动机的约束的一种手段。我们提出了一个正交球(OS)正常化程序,该正规剂是从基于物理学的潜在代表中出现的,而简化了假设。在进一步的简化假设下,可以以封闭形式写入简单的正常术语,并与跨凝回损失函数一起使用。研究结果表明,正常损失函数会导致a)富集和多样的特征表示,b)特征子选择的鲁棒性,c)在类激活图中更好的语义定位,d)模型校准误差的减少。我们通过在四个基准数据集中提供定量和定性结果-CIFAR10,CIFAR100,SVHN和Tiny Imagenet,证明了提出的OS正则化的有效性。

Standard deep learning models that employ the categorical cross-entropy loss are known to perform well at image classification tasks. However, many standard models thus obtained often exhibit issues like feature redundancy, low interpretability, and poor calibration. A body of recent work has emerged that has tried addressing some of these challenges by proposing the use of new regularization functions in addition to the cross-entropy loss. In this paper, we present some surprising findings that emerge from exploring the role of simple orthogonality constraints as a means of imposing physics-motivated constraints common in imaging. We propose an Orthogonal Sphere (OS) regularizer that emerges from physics-based latent-representations under simplifying assumptions. Under further simplifying assumptions, the OS constraint can be written in closed-form as a simple orthonormality term and be used along with the cross-entropy loss function. The findings indicate that orthonormality loss function results in a) rich and diverse feature representations, b) robustness to feature sub-selection, c) better semantic localization in the class activation maps, and d) reduction in model calibration error. We demonstrate the effectiveness of the proposed OS regularization by providing quantitative and qualitative results on four benchmark datasets - CIFAR10, CIFAR100, SVHN and tiny ImageNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源