论文标题

Keldysh技术中的Wigner-Weyl演算

Wigner-Weyl calculus in Keldysh technique

论文作者

Banerjee, C., Fialkovsky, I. V., Lewkowicz, M., Zhang, C. X., Zubkov, M. A.

论文摘要

我们讨论了Keldysh技术框架中冷凝物质/量子场系统的非平衡动力学。为了应对不均匀的系统,我们使用Wigner-Weyl形式主义。霍尔电导率的例子证明了上述两种方法的统一。我们通过Wigner表达霍尔电导率,改变了两点绿色的功能。我们证明了如何在零温度下将这种表达降低到热平衡中的拓扑数。同时,在有限温度和平衡下,拓扑不变性损失了。此外,霍尔电导率对相互作用校正变得敏感。

We discuss the non-equilibrium dynamics of condensed matter/quantum field systems in the framework of Keldysh technique. In order to deal with the inhomogeneous systems we use the Wigner-Weyl formalism. Unification of the mentioned two approaches is demonstrated on the example of Hall conductivity. We express Hall conductivity through the Wigner transformed two-point Green's functions. We demonstrate how this expression is reduced to the topological number in thermal equilibrium at zero temperature. At the same time both at finite temperature and out of equilibrium the topological invariance is lost. Moreover, Hall conductivity becomes sensitive to interaction corrections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源