论文标题
来自Harps-LFC月亮光谱的太阳引力红移。对相对论一般理论的检验
The solar gravitational redshift from HARPS-LFC Moon spectra. A test of the General Theory of Relativity
论文作者
论文摘要
相对论的一般理论预测了太阳光球中光谱线的红移,这是由于太阳的引力潜力。可以从太阳磁盘集成的通量频谱中测量太阳系统体内的反射光的光谱。连接到竖琴光谱仪的激光频率梳(LFC)校准系统提供了通过观察月球或其他太阳系身体进行准确测量太阳引力红移(GRS)的可能性。我们已经分析了来自五个高质量竖琴LFC光谱的Fe吸收线中观察到的线变化。我们在光谱范围476-585 nm中选择了326个光电线线的初始样本,并测量其线位置和等效宽度(EWS)。与实验室波长相比,准确的线移位于线核的波长位置。我们使用CO $^5 $ BOLD 3D合成轮廓符合观察到的光谱FE线。太阳光球中的对流动作不会影响比$ \ sim 150 $ ma强的Fe线芯线。在我们的样本中,只有15条FEI线的EWS在$ 150 <$ ew(ma)$ <550 $中,可对太阳能GRS的衡量为$ 639 \ pm14 $ $ $ $ {\ rm m \ s^{ - s^{ - 1}} $,与$ \ sim 633.1 $ sim 633.1 $ sim of Eartial The Orialtical The Orialtical The Origation The Origation The Orialtical The Origath The Origath The Or。 m \; s^{ - 1}} $。最终样本的大约97条弱铁线,EW $ <180 $ ma,使我们能够得出与理论太阳能GRS一致的平均全球线偏移$ 638 \ pm6 $ $ {\ rm m \; s^{ - 1}} $。这些是到目前为止太阳能GR的最准确测量值。在较大的光谱范围内(例如HARPS或ESPRESSO)校准的超级光谱仪,以及对实验室波长的进一步改进,可以对太阳能GRS进行更强大的测量以及3D流体动力学模型的进一步测试。
The General Theory of Relativity predicts the redshift of spectral lines in the solar photosphere, as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun's reflected light on solar system bodies. The laser frequency comb (LFC) calibration system attached to the HARPS spectrograph offers the possibility to perform an accurate measurement of the solar gravitational redshift (GRS) by observing the Moon or other solar system bodies. We have analysed the line shift observed in Fe absorption lines from five high-quality HARPS-LFC spectra of the Moon. We select an initial sample of 326 photospheric Fe lines in the spectral range 476-585 nm and measure their line positions and equivalent widths (EWs). Accurate line shifts are derived from the wavelength position of the core of the lines compared with the laboratory wavelengths. We fit the observed spectral Fe lines using CO$^5$BOLD 3D synthetic profiles. Convective motions in the solar photosphere do not affect the line cores of Fe lines stronger than about $\sim 150$ mA. In our sample, only 15 FeI lines have EWs in the range $150 <$ EW(mA) $< 550$, providing a measurement of the solar GRS at $639\pm14$ ${\rm m\;s^{-1}}$, consistent with the expected theoretical value on Earth of $\sim 633.1$ ${\rm m\;s^{-1}}$. A final sample of about 97 weak Fe lines with EW $<180$ mA allows us to derive a mean global line shift of $638\pm6$ ${\rm m\;s^{-1}}$ in agreement with the theoretical solar GRS. These are the most accurate measurements of the solar GRS so far. Ultrastable spectrographs calibrated with the LFC over a larger spectral range, such as HARPS or ESPRESSO, together with a further improvement on the laboratory wavelengths, could provide a more robust measurement of the solar GRS and further tests for the 3D hydrodynamical models.