论文标题
负概率:它们是什么,是什么
Negative probabilities: What they are and what they are for
论文作者
论文摘要
观察空间$ \ MATHCAL S $是概率分布的家族$ \ langle p_i:i \ in I \ rangle $以一致的方式共享一个常见的样本空间$ω$。 $ \ Mathcal S $的A \ Emph {接地}是$ω$上的签名概率分布$ \ MATHCAL P $,每$ i $的正确边缘分布$ p_i $。各种各样的量子场景可以正式化为观察空间。我们描述了许多量子观察空间的所有基础。我们的主要技术结果是严格的证据,表明Wigner的分布是独特的签名概率分布,可为位置和动量及其所有线性组合提供正确的边缘分布。
An observation space $\mathcal S$ is a family of probability distributions $\langle P_i: i\in I \rangle$ sharing a common sample space $Ω$ in a consistent way. A \emph{grounding} for $\mathcal S$ is a signed probability distribution $\mathcal P$ on $Ω$ yielding the correct marginal distribution $P_i$ for every $i$. A wide variety of quantum scenarios can be formalized as observation spaces. We describe all groundings for a number of quantum observation spaces. Our main technical result is a rigorous proof that Wigner's distribution is the unique signed probability distribution yielding the correct marginal distributions for position and momentum and all their linear combinations.