论文标题
使用不可靠的云资源来调度任务的模糊逻辑控制器
A Fuzzy Logic Controller for Tasks Scheduling Using Unreliable Cloud Resources
论文作者
论文摘要
云基础架构提供了最终用户使用付费模型的广泛的异质计算资源。可以使用不同的定价模型(例如不可靠的模型,在成本的一小部分提供资源,但不能保证不间断处理的情况下提供资源,可以提供这些虚拟化资源。但是,随着资源管理和日程安排决策的越来越复杂,大量的机会引起了人们的注意。此外,最佳选择资源中提出的不确定性也对通过调度算法提供的解决方案的质量产生负面影响。在本文中,我们提出了一种动态调度算法(即,不确定性驱动的调度 - UDS算法),用于管理云中科学工作流程。我们的模型通过动态选择可靠或不可靠的虚拟化资源来最大程度地减少MakePan和货币成本。为了涵盖决策的不确定性,我们采用模糊逻辑控制器(FLC)来得出将托管每个任务的资源的定价模型。我们使用在撤销不可靠资源的不同概率下测试的实际工作流程应用程序来评估所提出的算法的性能。数值结果描述了所提出的方法的性能,比较评估揭示了本文在相关文献中的位置。
The Cloud infrastructure offers to end users a broad set of heterogenous computational resources using the pay-as-you-go model. These virtualized resources can be provisioned using different pricing models like the unreliable model where resources are provided at a fraction of the cost but with no guarantee for an uninterrupted processing. However, the enormous gamut of opportunities comes with a great caveat as resource management and scheduling decisions are increasingly complicated. Moreover, the presented uncertainty in optimally selecting resources has also a negatively impact on the quality of solutions delivered by scheduling algorithms. In this paper, we present a dynamic scheduling algorithm (i.e., the Uncertainty-Driven Scheduling - UDS algorithm) for the management of scientific workflows in Cloud. Our model minimizes both the makespan and the monetary cost by dynamically selecting reliable or unreliable virtualized resources. For covering the uncertainty in decision making, we adopt a Fuzzy Logic Controller (FLC) to derive the pricing model of the resources that will host every task. We evaluate the performance of the proposed algorithm using real workflow applications being tested under the assumption of different probabilities regarding the revocation of unreliable resources. Numerical results depict the performance of the proposed approach and a comparative assessment reveals the position of the paper in the relevant literature.