论文标题
通过拓扑优化的一维介电元表面的逆设计:波动 - 趋势分析在钻石方算法辅助
Inverse design of a 1D dielectric metasurface by topology optimization: fluctuations-trend analysis assisted by a diamond-square algorithm
论文作者
论文摘要
我们提出了1D介电元表面的拓扑优化(TO)方法,将经典趋势 - 裂解分析(FTA)和Diamond-square-Algorithm(DSA)耦合。在经典的FTA中,最初产生了几个称为波动的设备分布,或者趋势或父亲的趋势或父亲。趋势函数的光谱特性可以有效地靶向最佳溶液的盆地。为了优化1D元面,以将正常入射的平面波偏转到给定的偏转角度,已经确定了余弦的函数是最佳的父亲剖面,可以有效地靶向局部最小值的盆地。但是,没有有效的方法可以预测有效避免不良局部优势的振荡的父亲概况数量。自然而然地建议控制父亲功能振荡数量的变量。但是,随机性搜索过程的主要缺点之一是,结合梯度方法,该算法可以针对目标,不受欢迎的局部最小值。本文提出的方法提高了经典FTA的可能性,以避免捕获不良的局部最佳解决方案。这是通过将最初的候选家族扩展到高质量后代来实现的,而钻石平方算法(DSA)产生了。这样做,确保最佳趋势的主要特征存储在所有后代结构的基因中。
We present a topology optimization (TO) method for a 1D dielectric metasurface, coupling the classical trend-fluctuations analysis (FTA) and the diamond-square-algorithm (DSA). In the classical FTA, a couple of device distributions termed Fluctuation or mother and Trends or father, with specific spectra is initially generated. The spectral properties of the trend function, allow to target efficiently the basin of optimal solutions. For optimizing a 1D metasurface to deflect a normally incident plane wave into a given deflecting angle, a cosine-like function has been identified to be an optimal father profile allowing to efficiently target a basin of local minima. However there is no efficient method to predict the father profile number of oscillations that effectively allows to avoid undesirable local optima. It would be natural to suggest a randomization of the variable which controls the number of oscillations of the father function. However, one of the main drawbacks of the randomness searching process is that, combined with a gradient method, the algorithm can target, undesirable local minima. The method proposed in this paper improves the possibility of the classical FTA to avoid the trapping of undesirable local optimal solutions. This is accomplished by extending the initial candidate family to higher quality offspring that are generated thanks to a diamond-square-algorithm (DSA). Doing so, ensures that the main features of the best trends are stored in the genes of all Offspring structures.