论文标题

将新闻流蒸馏成库存反应的分析

Distillation of News Flow into Analysis of Stock Reactions

论文作者

Zhang, Junni L., Härdle, Wolfgang Karl, Chen, Cathy Y., Bommes, Elisabeth

论文摘要

关于金融业务的巨大意见,事实和推文为测试和分析此类文本源对未来股票的影响的影响提供了机会。它还创造了通过统计技术提炼的必要性,即这种巨大且确实是巨大的数据源的内容内容。使用来自专业平台的混合文本源,博客Fora和股票留言板,我们通过不同的Lexica情感变量提炼。这些用于分析库存反应:波动性,数量和回报。提高的情绪,特别是对于那些负面影响的人,会影响波动和数量。这种影响取决于词汇投影,并且在全球行业分类标准(GIC)领域不同。根据2009年10月20日至2014年10月13日的100个标准普尔500分成分的审查文章,我们将投影到BL,MPQA,LM Lexica,并使用蒸馏性情感变量在面板环境中预测个人库存指示器。利用不同的词汇预测来测试不同的股票反应指标,我们旨在回答以下研究问题:(i)Lexica在其分析能力方面是否一致? (ii)鉴于情感量表,在哪个程度上有不对称响应(正V.S.负)? (iii)高关注公司的消息是否更快地扩散并导致及时有效的库存反应? (iv)蒸馏情绪措施是否有针对特定部门的反应?我们发现蒸馏新闻流中有明显的增量信息,情感效应的特征是库存反应的不对称,注意力特定和特定于部门的反应。

The gargantuan plethora of opinions, facts and tweets on financial business offers the opportunity to test and analyze the influence of such text sources on future directions of stocks. It also creates though the necessity to distill via statistical technology the informative elements of this prodigious and indeed colossal data source. Using mixed text sources from professional platforms, blog fora and stock message boards we distill via different lexica sentiment variables. These are employed for an analysis of stock reactions: volatility, volume and returns. An increased sentiment, especially for those with negative prospection, will influence volatility as well as volume. This influence is contingent on the lexical projection and different across Global Industry Classification Standard (GICS) sectors. Based on review articles on 100 S&P 500 constituents for the period of October 20, 2009, to October 13, 2014, we project into BL, MPQA, LM lexica and use the distilled sentiment variables to forecast individual stock indicators in a panel context. Exploiting different lexical projections to test different stock reaction indicators we aim at answering the following research questions: (i) Are the lexica consistent in their analytic ability? (ii) To which degree is there an asymmetric response given the sentiment scales (positive v.s. negative)? (iii) Are the news of high attention firms diffusing faster and result in more timely and efficient stock reaction? (iv) Is there a sector-specific reaction from the distilled sentiment measures? We find there is significant incremental information in the distilled news flow and the sentiment effect is characterized as an asymmetric, attention-specific and sector-specific response of stock reactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源