论文标题
重力波信号参数估计的计算技术
Computational Techniques for Parameter Estimation of Gravitational Wave Signals
论文作者
论文摘要
由于2015年两个黑洞的聚结首次检测到重力波以来,Ligo和处女座常规应用贝叶斯统计方法,以从嘈杂的干涉测量值中提取信号,从而获得负责产生信号的物理参数的点估计值,并严格地量化了其不正确的量。根据重力辐射的来源和使用的重力波形模型,已经设计了不同的计算技术。引力波的突出来源是二进制黑洞或中子星星合并,这是迄今为止检测器观察到的唯一对象。但是,核心塌陷超新星,快速旋转的中子星和随机重力波背景的引力波在地面干涉仪的灵敏度带中,预计将在未来的观察运行中观察到。由于复杂波形的非线性和高维参数空间排除了后验分布的分析评估,因此所有这些来源的后验推断依赖于计算机密集型模拟技术,例如马尔可夫链蒙特卡洛方法。将对研究人员在重力波数据分析的这一跨学科领域的最新贝叶斯统计参数估计方法进行综述。
Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational wave background are in the sensitivity band of the ground-based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high-dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer-intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state-of-the-art Bayesian statistical parameter estimation methods will be given for researchers in this cross-disciplinary area of gravitational wave data analysis.