论文标题

在具有给定度的图表的最小尺寸上-II

On the least size of a graph with a given degree set -- II

论文作者

Moondra, Jai, Sahdev, Aditya, Tripathi, Amitabha

论文摘要

有限简单的图表$ g $的学位集是$ g $的一组不同程度的顶点。 Kapoor,Polimeni&Wall的定理断言,具有给定学位$ \ Mathscr d $的图表的最小顺序是$ 1+\ max \ max \ mathscr d $。 Tripathi&Vijay考虑了与学位设置$ \ Mathscr d $的图形最小尺寸的类似问题。我们扩展了他们的结果,并确定(i)$ \ min \ mathscr d \ mathscr d \ mid d $ in \ in \ mathscr d $; (ii)$ \ min \ mathscr d = 2 $; (iii)$ \ mathscr d = \ {m,m+1,\ ldots,n \} $。此外,考虑到任何$ \ mathscr d $,我们产生了一个图形$ g $,其大小在$ \ min \ mathscr d $的最佳尺寸之内,提供了$ \ big(1+ \ frac {2} {2} {d_1+1})$ - 近似值,其中$ d_1 = \ d_1 = \ max \ mathscr d $。

The degree set of a finite simple graph $G$ is the set of distinct degrees of vertices of $G$. A theorem of Kapoor, Polimeni & Wall asserts that the least order of a graph with a given degree set $\mathscr D$ is $1+\max \mathscr D$. Tripathi & Vijay considered the analogous problem concerning the least size of graphs with degree set $\mathscr D$. We expand on their results, and determine the least size of graphs with degree set $\mathscr D$ when (i) $\min \mathscr D \mid d$ for each $d \in \mathscr D$; (ii) $\min \mathscr D=2$; (iii) $\mathscr D=\{m,m+1,\ldots,n\}$. In addition, given any $\mathscr D$, we produce a graph $G$ whose size is within $\min \mathscr D$ of the optimal size, giving a $\big(1+\frac{2}{d_1+1})$-approximation, where $d_1=\max \mathscr D$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源