论文标题

极限特征值的限制法律,大量尖刺的渔民矩阵具有不同数量的尖峰

Limiting laws for extreme eigenvalues of large-dimensional spiked Fisher matrices with a divergent number of spikes

论文作者

Xie, Junshan, Zeng, Yicheng, Zhu, Lixing

论文摘要

考虑$ p \ times p $矩阵,该矩阵是人口协方差矩阵的产物和另一个人口协方差矩阵的倒数。假设他们的差异在$ p $方面具有不同的排名,当两个人群中有两个大小$ n $和$ t $的样本时,我们构建了相应的样本版本。在高维度的政权中,$ n $和$ t $与$ p $成正比,我们调查了当尖峰数量分歧时,样品(尖刺)Fisher矩阵的极限(尖刺)特征值的限制法律,并且这些尖峰没有结合。

Consider the $p\times p$ matrix that is the product of a population covariance matrix and the inverse of another population covariance matrix. Suppose that their difference has a divergent rank with respect to $p$, when two samples of sizes $n$ and $T$ from the two populations are available, we construct its corresponding sample version. In the regime of high dimension where both $n$ and $T$ are proportional to $p$, we investigate the limiting laws for extreme (spiked) eigenvalues of the sample (spiked) Fisher matrix when the number of spikes is divergent and these spikes are unbounded.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源