论文标题

爱丽丝:用对比性自然语言解释积极学习

ALICE: Active Learning with Contrastive Natural Language Explanations

论文作者

Liang, Weixin, Zou, James, Yu, Zhou

论文摘要

培训监督的神经网络分类器通常需要许多带注释的培训样本。收集和注释大量数据点是昂贵的,有时甚至是不可行的。传统注释过程使用低频带的人机通信界面:分类标签,每个标签都只提供了几个信息。我们建议使用对比度解释(Alice)的积极学习,这是一个专家培训框架,利用对比性的自然语言解释来提高学习效率。爱丽丝学会先使用主动学习来选择最有用的标签类别的班级,以引起专家的对比自然语言解释。然后,它使用语义解析器从这些解释中提取知识。最后,它通过动态改变学习模型的结构来结合提取的知识。我们将爱丽丝应用于两项视觉识别任务,鸟类分类和社会关系分类。我们发现,通过合并对比解释,我们的模型优于基线模型,这些模型接受了40-100%的培训数据。我们发现,添加1个解释会导致与添加13-30个标记的培训数据点相似的性能增益。

Training a supervised neural network classifier typically requires many annotated training samples. Collecting and annotating a large number of data points are costly and sometimes even infeasible. Traditional annotation process uses a low-bandwidth human-machine communication interface: classification labels, each of which only provides several bits of information. We propose Active Learning with Contrastive Explanations (ALICE), an expert-in-the-loop training framework that utilizes contrastive natural language explanations to improve data efficiency in learning. ALICE learns to first use active learning to select the most informative pairs of label classes to elicit contrastive natural language explanations from experts. Then it extracts knowledge from these explanations using a semantic parser. Finally, it incorporates the extracted knowledge through dynamically changing the learning model's structure. We applied ALICE in two visual recognition tasks, bird species classification and social relationship classification. We found by incorporating contrastive explanations, our models outperform baseline models that are trained with 40-100% more training data. We found that adding 1 explanation leads to similar performance gain as adding 13-30 labeled training data points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源