论文标题

扰动任何完全集成的汉密尔顿系统的关键思想,获得卷熵的非专注

Key ideas behind perturbing any completely integrable Hamiltonian system obtaining volume entropy non-expansiveness

论文作者

Burago, Dmitri, Chen, Dong, Ivanov, Sergei

论文摘要

本文宣布了结果,随后对背后的一些想法进行了解释。证明将出现在其他地方。我们的目标是建造任何完全可以集成的哈密顿制度的哈密顿扰动,其自由度为$ 2n $($ n \ geq 2 $)。扰动为$ c^{\ infty} $ smill,但所产生的流量为阳性度量熵,并且满足KAM非分类条件。关键点是,可以在一个轨迹的任意小管邻居中生成阳性熵。

This paper is an announcement of a result followed with explanations of some ideas behind. The proofs will appear elsewhere. Our goal is to construct a Hamiltonian perturbation of any completely integrable Hamiltonian system with $2n$ degrees of freedom ($n\geq 2$). The perturbation is $C^{\infty}$ small but the resulting flow has positive metric entropy and it satisfies KAM non-degeneracy conditions. The key point is that positive entropy can be generated in an arbitrarily small tubular neighborhood of one trajectory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源