论文标题
在有限温度下的全息相关器
Holographic Correlators at Finite Temperature
论文作者
论文摘要
我们考虑在有限温度下ADS中的QFT弱耦合。我们在边界理论中计算标量运算符的全息热两点函数。我们介绍了由于大体中局部四分之一相互作用而引起的领先校正的分析表达式,具有任意数量的衍生物和任何数量的时空维度。解决方案是通过明智地选择安萨兹并施加一致性条件来确定的。条件包括分析性能,与操作员产品扩展的一致性以及久保 - 马丁 - 辛格林条件。对于没有任何导数的情况,我们与明确的图解计算表示一致。答案的结构暗示了热梅林振幅。此外,我们得出了热两个点函数的简单分散关系,该功能从其不连续性中重建该函数。
We consider weakly-coupled QFT in AdS at finite temperature. We compute the holographic thermal two-point function of scalar operators in the boundary theory. We present analytic expressions for leading corrections due to local quartic interactions in the bulk, with an arbitrary number of derivatives and for any number of spacetime dimensions. The solutions are fixed by judiciously picking an ansatz and imposing consistency conditions. The conditions include analyticity properties, consistency with the operator product expansion, and the Kubo-Martin-Schwinger condition. For the case without any derivatives we show agreement with an explicit diagrammatic computation. The structure of the answer is suggestive of a thermal Mellin amplitude. Additionally, we derive a simple dispersion relation for thermal two-point functions which reconstructs the function from its discontinuity.