论文标题
与半光谱高光谱降低的空间光谱比对的关节和渐进式子空间分析(JPSA)
Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction
论文作者
论文摘要
常规的非线性子空间学习技术(例如,流形学习)通常会在解释性(显式映射)和成本效益(线性化),通用能力(样本外)和可表示性(空间 - 光谱歧视)中引入一些缺点。为了克服这些缺点,开发了一种具有空间光谱歧管比对的新型线性化子空间分析技术,用于半监督的高光谱降低降低(HDR),称为关节和渐进式子空间分析(JPSA)。 JPSA从高光谱数据中学习了高级,语义上有意义的,联合空间 - 光谱特征表示,1)共同学习潜在子空间和线性分类器,以找到有效的分类的有效投影方向; 2)逐步搜索子空间的几个中间状态,以接近从原始空间到潜在歧视性子空间的最佳映射; 3)在每个学到的潜在子空间中的空间和频谱对齐歧管结构,以保留压缩数据和原始数据之间相同或相似的拓扑特性。简单但有效的分类器,即最近的邻居(NN),作为验证不同HDR方法的算法性能的潜在应用。进行了广泛的实验,以证明所提出的JPSA对两个广泛使用的高光谱数据集的优势和有效性:与先前的先前最先进的HDR HDR方法相比,印度松树(92.98 \%)和休斯敦大学(86.09 \%)(86.09 \%)。这项基本工作的演示(即ECCV2018)可在https://github.com/danfenghong/eccv2018_j-play上公开获得。
Conventional nonlinear subspace learning techniques (e.g., manifold learning) usually introduce some drawbacks in explainability (explicit mapping) and cost-effectiveness (linearization), generalization capability (out-of-sample), and representability (spatial-spectral discrimination). To overcome these shortcomings, a novel linearized subspace analysis technique with spatial-spectral manifold alignment is developed for a semi-supervised hyperspectral dimensionality reduction (HDR), called joint and progressive subspace analysis (JPSA). The JPSA learns a high-level, semantically meaningful, joint spatial-spectral feature representation from hyperspectral data by 1) jointly learning latent subspaces and a linear classifier to find an effective projection direction favorable for classification; 2) progressively searching several intermediate states of subspaces to approach an optimal mapping from the original space to a potential more discriminative subspace; 3) spatially and spectrally aligning manifold structure in each learned latent subspace in order to preserve the same or similar topological property between the compressed data and the original data. A simple but effective classifier, i.e., nearest neighbor (NN), is explored as a potential application for validating the algorithm performance of different HDR approaches. Extensive experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets: Indian Pines (92.98\%) and the University of Houston (86.09\%) in comparison with previous state-of-the-art HDR methods. The demo of this basic work (i.e., ECCV2018) is openly available at https://github.com/danfenghong/ECCV2018_J-Play.