论文标题

扰动量子场理论的物种理论基础

Species-theoretic foundations of perturbative quantum field theory

论文作者

Norledge, William

论文摘要

我们开发了基于Joyal的组合物种的扰动量子场理论(PQFT)的代数形式主义。我们表明,PQFT的某些基本结构被正确看作是与cauchy单体产物构建的物种内部的代数结构。这种形式主义的各个方面出现在物理学文献中,特别是在Bogoliubov-Shirkov,Steinmann,Ruelle和Epstein-Glaser-Stora的工作中。在本文中,我们根据Aguiar-Mahajan开发的现代理论提供了一个完全明确的描述。我们将因果扰动理论的中心结构描述为从群体组合物的霍普夫(Hopf)组成的同态,并用局部可观察物装饰到了微疗法多项式可观察物的质代数中。在咖喱同态下,获得了称为(广义的)定时产物和(广义)智障产品的操作员值分布,作为该HOPF MONOID的基本元素的图像。扰动S-Matrix方案对应于所谓的通用序列,而因果分解的特性自然地表达了Hopf Monoid对Hopf Powers本身的作用而言,称为Titts产品。给定一个完全重新规定的时级产品的系统,相应的相互作用产品的扰动构造是通过对Hopf Monoid的biderativation进行的,该啤酒花hopf monoid恢复了Bogoliubov的公式。

We develop an algebraic formalism for perturbative quantum field theory (pQFT) which is based on Joyal's combinatorial species. We show that certain basic structures of pQFT are correctly viewed as algebraic structures internal to species, constructed with respect to the Cauchy monoidal product. Aspects of this formalism have appeared in the physics literature, particularly in the work of Bogoliubov-Shirkov, Steinmann, Ruelle, and Epstein-Glaser-Stora. In this paper, we give a fully explicit account in terms of modern theory developed by Aguiar-Mahajan. We describe the central construction of causal perturbation theory as a homomorphism from the Hopf monoid of set compositions, decorated with local observables, into the Wick algebra of microcausal polynomial observables. The operator-valued distributions called (generalized) time-ordered products and (generalized) retarded products are obtained as images of fundamental elements of this Hopf monoid under the curried homomorphism. The perturbative S-matrix scheme corresponds to the so-called universal series, and the property of causal factorization is naturally expressed in terms of the action of the Hopf monoid on itself by Hopf powers, called the Tits product. Given a system of fully renormalized time-ordered products, the perturbative construction of the corresponding interacting products is via an up biderivation of the Hopf monoid, which recovers Bogoliubov's formula.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源