论文标题
多稳定性和罕见的正压$β$ - 平面湍流中的自发过渡
Multistability and rare spontaneous transitions in barotropic $β$-plane turbulence
论文作者
论文摘要
我们证明,类似于类准式的Jovian的湍流Zonal喷气机实际上是可转稳定的。很长时间后,他们随机切换到具有不同数量的喷气机的新配置。这种现象的通用性表明,大多数准平台的湍流行星气氛可能具有许多气候和吸引子,用于外部强迫参数的固定值。一个关键信息是,通常不会通过运行数值模型来检测到这种情况,因为从一个气候变为另一种气候的平均过渡时间非常长。为了研究这种现象,我们需要使用特定的工具:罕见的事件算法和大偏差理论。借助这些工具,我们对经典的正压β平面准充血模型进行完整的统计力学研究。它表现出强大的双峰性,并突然过渡。我们表明,新喷气机自发地从西向喷气机成核。数值计算的平均过渡时间与ARRHENIUS定律一致,显示出随着Ekman耗散的减少,概率的指数下降。这种现象学由称为{\ it instantons}的稀有噪声驱动的路径控制。此外,我们计算相应有效动力学的马鞍。对于具有三个交替喷气机的国家的动态,我们发现了一个由对称群体$ {\ cal s} _3 $排列的意外丰富的动态,并带有两个不同的Instantons家族,这对于一个系统来说是一个惊喜,在该系统中,一切似乎都固定在该模型的先前模拟中。我们讨论了我们对更现实模型的方法的未来概括。
We demonstrate that turbulent zonal jets, analogous to Jovian ones, which are quasi-stationary, are actually metastable. After extremely long times, they randomly switch to new configurations with a different number of jets. The genericity of this phenomenon suggests that most quasi-stationary turbulent planetary atmospheres might have many climates and attractors for fixed values of the external forcing parameters. A key message is that this situation will usually not be detected by simply running the numerical models, because of the extremely long mean transition time to change from one climate to another. In order to study such phenomena, we need to use specific tools: rare event algorithms and large deviation theory. With these tools, we make a full statistical mechanics study of a classical barotropic beta-plane quasigeostrophic model. It exhibits robust bimodality with abrupt transitions. We show that new jets spontaneously nucleate from westward jets. The numerically computed mean transition time is consistent with an Arrhenius law showing an exponential decrease of the probability as the Ekman dissipation decreases. This phenomenology is controlled by rare noise-driven paths called {\it instantons}. Moreover, we compute the saddles of the corresponding effective dynamics. For the dynamics of states with three alternating jets, we uncover an unexpectedly rich dynamics governed by the symmetric group ${\cal S}_3$ of permutations, with two distinct families of instantons, which is a surprise for a system where everything seemed stationary in the hundreds of previous simulations of this model. We discuss the future generalization of our approach to more realistic models.