论文标题

全球存在强大的解决方案,用于平面可压缩磁性流体动力方程,并在无界域中具有大初始数据

Global existence of strong solutions to the planar compressible magnetohydrodynamic equations with large initial data in unbounded domains

论文作者

Lü, Boqiang, Shi, Xiaoding, Xiong, Chengfeng

论文摘要

在一维无界结构域中,我们考虑了具有恒定粘度和热电导率的平面可压缩磁性水力动力学(MHD)的方程。更确切地说,我们证明了具有大量初始数据的全球强大解决方案的全球解决方案,这些数据满足了与Kazhikhov在有限域中的理论相同的条件(Kazhikhikhov 1987 1987数学物理学方程(Krasnoyoyarsk))。特别是,我们的结果概括了Kazhikhov的理论,即在有限域中的初始边界价值问题到无限的情况。

In one-dimensional unbounded domains, we consider the equations of a planar compressible magnetohydrodynamic (MHD) flow with constant viscosity and heat conductivity. More precisely, we prove the global existence of strong solutions to the MHD equations with large initial data satisfying the same conditions as those of Kazhikhov's theory in bounded domains (Kazhikhov 1987 Boundary Value Problems for Equations of Mathematical Physics (Krasnoyarsk)). In particular, our result generalizes the Kazhikhov's theory for the initial boundary value problem in bounded domains to the unbounded case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源