论文标题

移动蜂窝连接的无人机:天空限制的增强学习

Mobile Cellular-Connected UAVs: Reinforcement Learning for Sky Limits

论文作者

Azari, M. Mahdi, Arani, Atefeh Hajijamali, Rosas, Fernando

论文摘要

蜂窝连接的无人机(UAV)面临着有关连通性和能源效率的几个关键挑战。通过基于学习的策略,我们提出了一种一般新型的多臂匪徒(MAB)算法,以减少无人机的断开时间,移交率和能源消耗,并考虑其完成任务完成的时间。通过将问题作为无人机速度的函数提出,我们通过采用适当的相应学习参数(例如与盲策略相比,HO率降低了50%。但是,结果表明,学习参数的最佳组合在急需取决于任何特定应用以及PI的权重对最终目标函数上。

A cellular-connected unmanned aerial vehicle (UAV)faces several key challenges concerning connectivity and energy efficiency. Through a learning-based strategy, we propose a general novel multi-armed bandit (MAB) algorithm to reduce disconnectivity time, handover rate, and energy consumption of UAV by taking into account its time of task completion. By formulating the problem as a function of UAV's velocity, we show how each of these performance indicators (PIs) is improved by adopting a proper range of corresponding learning parameter, e.g. 50% reduction in HO rate as compared to a blind strategy. However, results reveal that the optimal combination of the learning parameters depends critically on any specific application and the weights of PIs on the final objective function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源