论文标题

$ \ operatatorName {gl}^+(2)$带有紧凑的连接sublevel Sets上的$ \ operatatorName上的等级一凸,非polyconvex

A rank-one convex, non-polyconvex isotropic function on $\operatorname{GL}^+(2)$ with compact connected sublevel sets

论文作者

Voss, Jendrik, Ghiba, Ionel-Dumitrel, Martin, Robert J., Neff, Patrizio

论文摘要

根据Cardaliaguet和Tahraoui的2002定理,该组的各向同性,紧凑且连接的子集$ \ permatatorName {gl}^+(2)可转让$ 2 \ times2 - \,$矩阵的$仅是rank-One convex if and pollyConconvex。在亚历山大·米尔克(Alexander〜Mielke)的2005年《凸分析杂志》(Journal of Alexander〜Mielke)的一篇文章中,人们猜想,等级 - 一凸和多峰的等效性在$ \ operatotorname {gl}^+(2)$上也适用于各向同性函数,只要他们的超级平台满足了相应的要求。我们通过给出一个函数$ w的明确示例$ w:\ operatorname {gl}^+\ to \ mathbb {r} $,而不是polyconvex,而是rank-One凸面以及与紧凑型和连接的Sublevel集合。

According to a 2002 theorem by Cardaliaguet and Tahraoui, an isotropic, compact and connected subset of the group $\operatorname{GL}^+(2)$ of invertible $2\times2-\,$matrices is rank-one convex if and only if it is polyconvex. In a 2005 Journal of Convex Analysis article by Alexander~Mielke, it has been conjectured that the equivalence of rank-one convexity and polyconvexity holds for isotropic functions on $\operatorname{GL}^+(2)$ as well, provided their sublevel sets satisfy the corresponding requirements. We negatively answer this conjecture by giving an explicit example of a function $W:\operatorname{GL}^+\to\mathbb{R}$ which is not polyconvex, but rank-one convex as well as isotropic with compact and connected sublevel sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源