论文标题

拓扑绝缘体表面状态电导率的可逆工程通过光激发

Reversible Engineering of Topological Insulator Surface State Conductivity through Optical Excitation

论文作者

Xie, Faji, Lian, Zhen, Zhang, Shuai, Wang, Tianmeng, Miao, Shengnan, Song, Zhiyong, Ying, Zhe, Pan, Xing-Chen, Long, Mingsheng, Zhang, Minhao, Fei, Fucong, Hu, Weida, Yu, Geliang, Song, Fengqi, Kang, Ting-Ting, Shi, Su-Fei

论文摘要

尽管有宽带响应,但在特定波长处的光吸收有限仍阻碍基于狄拉克费米子的光电子的发展。为此,已经探索了石墨烯和各种半导体的异质结构,而非理想接口通常会限制性能。拓扑绝缘子是一种天然的混合系统,表面状态具有较高的驱动性Dirac费米子,而小型带式半导体的散装状态则强烈吸收光。在这项工作中,我们基于固有拓扑绝缘子SN-BI1.1SB0.9TE2S显示了磁场效应晶体管设备的较大光电流响应。光电流响应是非挥发性的,并且敏感地取决于表面状态的初始费米能,并且可以通过控制栅极电压来消除它。我们的观察结果可以用一种远程的光掺杂机制来解释,其中光激发了散装中的缺陷,并将局部载体释放到表面状态。该光接头调节表面状态的电导率而不损害迁移率,并且还显着改变了表面状态的量子大厅效应。因此,我们的工作说明了通过光激发可逆地操纵表面状态的途径,从而使光线利用拓扑表面状态进行量子光电子。

Despite the broadband response, limited optical absorption at a particular wavelength hinders the development of optoelectronics based on Dirac fermions. Heterostructures of graphene and various semiconductors have been explored for this purpose, while non-ideal interfaces often limit the performance. The topological insulator is a natural hybrid system, with the surface states hosting high-mobility Dirac fermions and the small-bandgap semiconducting bulk state strongly absorbing light. In this work, we show a large photocurrent response from a field effect transistor device based on intrinsic topological insulator Sn-Bi1.1Sb0.9Te2S. The photocurrent response is non-volatile and sensitively depends on the initial Fermi energy of the surface state, and it can be erased by controlling the gate voltage. Our observations can be explained with a remote photo-doping mechanism, in which the light excites the defects in the bulk and frees the localized carriers to the surface state. This photodoping modulates the surface state conductivity without compromising the mobility, and it also significantly modify the quantum Hall effect of the surface state. Our work thus illustrates a route to reversibly manipulate the surface states through optical excitation, shedding light into utilizing topological surface states for quantum optoelectronics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源