论文标题

可逆工程通过受控气体大气下的激光辐照单层MOS2的自旋轨道耦合

Reversible engineering the spin-orbit coupling of monolayer MoS2 via laser irradiation under controlled gas atmospheres

论文作者

Xilong, Liang, Chengbing, Qin, Yan, Gao, Shuangping, Han, Guofeng, Zhang, Ruiyun, Chen, Jianyong, Hu, Liantuan, Xiao, Suotang, Jia

论文摘要

单层过渡金属二分裂基化金(TMDS)具有强旋轨耦合以及反转对称性的断裂,导致自旋和山谷自由度的耦合,使这些材料对潜在的自旋三位型和山谷的影响非常有趣。但是,由于设备制造后的需求,在室温下设计自旋轨道耦合(SOC)仍然是其实际应用的巨大挑战。在这里,我们通过在受控的气体环境下激光辐射来可逆地设计单层MOS2的自旋轨道耦合,在该环境中,自旋轨道分裂已在120 MeV至200 MeV中有效调节。此外,B激子的光致发光(PL)强度可以在2个数量级以上可逆操作。我们将自旋轨道分裂的工程归因于结合能以及带重新归一化的结合能量的还原,源自惰性气体下单层MOS2的吸收系数,并随后增强的载体浓度。工程阶段的反射率对比光谱提供了明确的证据,以支持我们的解释。我们的方法提供了一种新的途径,可以在室温下积极控制TMDS材料中的SOC强度,并为设计创新的自旋设备铺平了道路。

Monolayer transition metal dichalcogenides (TMDs) with strong spin-orbit coupling combined with broken inversion symmetry, leading to a coupling of spin and valley degrees of freedom, make these materials highly interesting for potential spintronics and valleytronic applications. However, engineering the spin-orbit coupling (SOC) at room temperature as demand after device fabrication is still a great challenge for their practical applications. Here we reversibly engineer the spin-orbit coupling of monolayer MoS2 by laser irradiation under controlled gas environments, where the spin-orbit splitting has been effectively regulated within 120 meV to 200 meV. Furthermore, the photoluminescence (PL) intensity of B exciton can be invertible manipulation over 2 orders of magnitude. We attribute the engineering of spin-orbit splitting to the reduction of binding energy combined with band renormalization, originating from the enhanced absorption coefficient of monolayer MoS2 under inert gases and subsequent the significantly boosted carrier concentrations. Reflectance contrast spectra during the engineering stage provide unambiguous proof to support our interpretation. Our approach offers a new avenue to actively control the SOC strength in TMDs materials at room temperature and paves the way for designing innovative spintronics devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源