论文标题
固定增益放大和前向继电器的两跳空中通信系统的物理层安全性
Physical-Layer Security for Two-Hop Air-to-Underwater Communication Systems With Fixed-Gain Amplify-and-Forward Relaying
论文作者
论文摘要
我们使用固定增益放大和前向(AF)继电器分析了安全的两跳混合射频(RF)和水下无线光学通信(UWOC)系统。 UWOC通道是使用统一的混合物指数加定伽马分布来建模的,以考虑气泡和温度梯度对传输特性的综合作用。合法和窃听的RF通道都是使用灵活的$α-μ$分布来建模的。具体而言,我们首先得出了混合RF和UWOC系统的接收信噪比(SNR)的概率密度函数(PDF)和累积分布函数(CDF)。根据PDF和CDF表达式,我们得出了秘密中断概率(SOP)紧密下限(SOP)的闭合形式表达式和非零保密能力(PNZ)的概率,这些概率均以双向福克斯Fox的$ h $ function表示。为了利用这些分析表达式,我们仅使用基本函数来得出SOP和PNZ的渐近表达式。同样,我们使用渐近表达式来确定最佳传输能力以最大程度地提高能源效率。此外,我们彻底研究了UWOC通道中气泡水平和温度梯度水平的影响,并研究了传输介质的非线性特征以及RF通道的多径簇对保密性能的影响。最后,使用蒙特卡洛模拟验证了所有分析。
We analyze a secure two-hop mixed radio frequency (RF) and underwater wireless optical communication (UWOC) system using a fixed-gain amplify-and-forward (AF) relay. The UWOC channel is modeled using a unified mixture exponential-generalized Gamma distribution to consider the combined effects of air bubbles and temperature gradients on transmission characteristics. Both legitimate and eavesdropping RF channels are modeled using flexible $α-μ$ distributions. Specifically, we first derive both the probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) of the mixed RF and UWOC system. Based on the PDF and CDF expressions, we derive the closed-form expressions for the tight lower bound of the secrecy outage probability (SOP) and the probability of non-zero secrecy capacity (PNZ), which are both expressed in terms bivariate Fox's $H$-function. To utilize these analytical expressions, we derive asymptotic expressions of SOP and PNZ using only elementary functions. Also, we use asymptotic expressions to determine the optimal transmitting power to maximize energy efficiency. Further, we thoroughly investigate the effect of levels of air bubbles and temperature gradients in the UWOC channel, and study nonlinear characteristics of the transmission medium and the number of multipath clusters of the RF channel on the secrecy performance. Finally, all analyses are validated using Monte Carlo simulation.