论文标题
原始的Weinstein子域
Prime-localized Weinstein subdomains
论文作者
论文摘要
对于任何高维的温斯坦领域和有限的素数集合,我们构建了Weinstein子域,其包裹的Fukaya类别是原始包装的福卡亚类别的本地化,而不是给定的素数。当原始域是一个cotangent束时,这些子域形成一个降低的晶格,其顺序无法逆转。 此外,我们对简单连接的旋转歧管的cotangent束的Weinstein子域的可能包裹的福卡亚类别进行了分类,这表明它们都与这些主要本地化之一相吻合。在此过程中,我们描述了一个球体束包裹的福卡亚类别中哪些扭曲的复合物对真正的拉格朗日人来说是同构的。
For any high-dimensional Weinstein domain and finite collection of primes, we construct a Weinstein subdomain whose wrapped Fukaya category is a localization of the original wrapped Fukaya category away from the given primes. When the original domain is a cotangent bundle, these subdomains form a decreasing lattice whose order cannot be reversed. Furthermore, we classify the possible wrapped Fukaya categories of Weinstein subdomains of a cotangent bundle of a simply connected, spin manifold, showing that they all coincide with one of these prime localizations. In the process, we describe which twisted complexes in the wrapped Fukaya category of a cotangent bundle of a sphere are isomorphic to genuine Lagrangians.