论文标题
对话蒸馏:使用未配对数据的开放域对话增加
Dialogue Distillation: Open-Domain Dialogue Augmentation Using Unpaired Data
论文作者
论文摘要
开放域对话系统的最新进展取决于在大规模数据中训练的神经模型的成功。但是,收集大规模的对话数据通常是耗时且劳动力密集的。为了解决此数据困境,我们提出了一种新的数据增强方法,用于利用未配对的数据来训练开放域对话模型。具体而言,首先提出了一个数据级蒸馏过程来构建增强对话,其中邮政和响应都可以从不配对的数据中检索。使用排名模块来滤除低质量的对话。此外,采用模型级蒸馏过程来提炼经过高质量配对数据的教师模型以增强对话对,从而防止对话模型受增强数据中噪声的影响。自动和手动评估表明,我们的方法可以产生具有不同内容的高质量对话对,而拟议的数据级和模型级对话蒸馏可以改善竞争性基线的性能。
Recent advances in open-domain dialogue systems rely on the success of neural models that are trained on large-scale data. However, collecting large-scale dialogue data is usually time-consuming and labor-intensive. To address this data dilemma, we propose a novel data augmentation method for training open-domain dialogue models by utilizing unpaired data. Specifically, a data-level distillation process is first proposed to construct augmented dialogues where both post and response are retrieved from the unpaired data. A ranking module is employed to filter out low-quality dialogues. Further, a model-level distillation process is employed to distill a teacher model trained on high-quality paired data to augmented dialogue pairs, thereby preventing dialogue models from being affected by the noise in the augmented data. Automatic and manual evaluation indicates that our method can produce high-quality dialogue pairs with diverse contents, and the proposed data-level and model-level dialogue distillation can improve the performance of competitive baselines.