论文标题

探索时空交通预测的普遍性:元模型和一个分析框架

Exploring the Generalizability of Spatio-Temporal Traffic Prediction: Meta-Modeling and an Analytic Framework

论文作者

Wang, Leye, Chai, Di, Liu, Xuanzhe, Chen, Liyue, Chen, Kai

论文摘要

时空交通预测(STTP)问题是一个经典问题,其先前的研究工作受益于传统的统计学习和最近的深度学习方法。尽管STTP可以参考许多现实世界中的问题,但大多数现有研究都集中在非常具体的应用上,例如出租车需求,乘车订单,交通速度等。这阻碍了STTP研究,因为为不同应用设计的方法几乎是可比性的,因此如何将应用程序驱动的方法推广到其他情况尚不清楚。为了填补这一差距,本文做出了三项努力:(i)我们提出了一个称为Stanalytic的分析框架,以定性地调查其在各种空间和时间因素上的设计考虑方面的STTP方法,旨在使不同的应用程序驱动的方法可比; (ii)我们设计了一种称为STMETA的时空元模型,它可以灵活地整合由stanalytics确定的可通用的时间和空间知识,(iii)我们构建了一个STTP基准平台,包括十个现实生活中的数据集,其中包括五个场景和五个场景,以定量测量STTP接近的通用性。特别是,我们实现具有不同深度学习技术的STMETA,而STMETA通过平均在所有数据集中达到较低的预测错误来证明与最先进的方法更好。

The Spatio-Temporal Traffic Prediction (STTP) problem is a classical problem with plenty of prior research efforts that benefit from traditional statistical learning and recent deep learning approaches. While STTP can refer to many real-world problems, most existing studies focus on quite specific applications, such as the prediction of taxi demand, ridesharing order, traffic speed, and so on. This hinders the STTP research as the approaches designed for different applications are hardly comparable, and thus how an application-driven approach can be generalized to other scenarios is unclear. To fill in this gap, this paper makes three efforts: (i) we propose an analytic framework, called STAnalytic, to qualitatively investigate STTP approaches regarding their design considerations on various spatial and temporal factors, aiming to make different application-driven approaches comparable; (ii) we design a spatio-temporal meta-model, called STMeta, which can flexibly integrate generalizable temporal and spatial knowledge identified by STAnalytic, (iii) we build an STTP benchmark platform including ten real-life datasets with five scenarios to quantitatively measure the generalizability of STTP approaches. In particular, we implement STMeta with different deep learning techniques, and STMeta demonstrates better generalizability than state-of-the-art approaches by achieving lower prediction error on average across all the datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源