论文标题
关于规律的传播和第五阶KDV-BBM模型溶液中分析性半径的演变
On propagation of regularities and evolution of radius of analyticity in the solution of the fifth order KdV-BBM model
论文作者
论文摘要
我们考虑了与第五阶KDV-BBM类型模型相关的初始值问题(IVP),该模型描述了单向水波的传播。我们证明,初始数据中的规律性在解决方案中传播,换句话说,在该模型的解决方案中不会出现或消失。我们还证明了IVP在分析函数空间(所谓的Gevrey类)中的局部良好性。此外,我们通过为上限和下限提供明确的公式来讨论该类别中分析性半径的演变。
We consider the initial value problem (IVP) associated to a fifth order KdV-BBM type model that describes the propagation of unidirectional water waves. We prove that the regularity in the initial data propagates in the solution, in other words no singularities can appear or disappear in the solution to this model. We also prove the local well-posedness of the IVP in the space of the analytic functions, the so called Gevrey class. Furthermore, we discuss the evolution of radius of analyticity in such class by providing explicit formulas for upper and lower bounds.