论文标题

有效的空间鲁棒性认证

Efficient Certification of Spatial Robustness

论文作者

Ruoss, Anian, Baader, Maximilian, Balunović, Mislav, Vechev, Martin

论文摘要

最近的工作使计算机视觉模型对向量现场攻击的脆弱性揭示了。由于此类模型在安全性至关重要的应用中的广泛使用,因此量化它们对这种空间转换的鲁棒性至关重要。但是,现有工作仅通过通过对抗攻击而对向量场变形进行经验鲁棒性量化,这些攻击缺乏可证明的保证。在这项工作中,我们提出了新颖的凸放松,使我们首次能够为矢量场转换提供鲁棒性。我们的放松是模型不平衡的,可以通过广泛的神经网络验证器来利用。在各种网络架构和不同数据集的实验证明了我们方法的有效性和可扩展性。

Recent work has exposed the vulnerability of computer vision models to vector field attacks. Due to the widespread usage of such models in safety-critical applications, it is crucial to quantify their robustness against such spatial transformations. However, existing work only provides empirical robustness quantification against vector field deformations via adversarial attacks, which lack provable guarantees. In this work, we propose novel convex relaxations, enabling us, for the first time, to provide a certificate of robustness against vector field transformations. Our relaxations are model-agnostic and can be leveraged by a wide range of neural network verifiers. Experiments on various network architectures and different datasets demonstrate the effectiveness and scalability of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源