论文标题
有效的人:学习像素的扩张滤波,用于高效单位图
EfficientDeRain: Learning Pixel-wise Dilation Filtering for High-Efficiency Single-Image Deraining
论文作者
论文摘要
由于未知的降雨模型,单位形象降低非常具有挑战性。现有的方法通常是对雨模型的特定假设,这些假设几乎不能涵盖现实世界中许多不同的情况,从而使它们必须采用复杂的优化或渐进式的改进。但是,这显着影响了这些方法对许多关键效率应用的效率和有效性。为了填补这一空白,在本文中,我们将单图像视为一个一般图像增强问题,并提出了一种无模型的deraining方法,即最初能够在10〜ms(即平均6〜ms)内处理下雨的图像(即平均6〜ms),比正常的方法更快地效果(即相似)(即rcdne),而rcdnet的效果(即,rcdnet)。我们首先提出了新型像素的扩张过滤。特别是,通过从内核预测网络估算的像素核过滤下雨图像,可以有效预测每个像素的合适的多尺度内核。然后,为了消除合成和真实数据之间的差距,我们进一步提出了一种有效的数据增强方法(即RainMix),该方法有助于训练网络进行真实的雨水图像处理。我们对合成和现实世界中的雨水数据集进行全面评估,以证明我们方法的有效性和效率。我们在https://github.com/tsingqguo/effideDerain.git中发布模型和代码。
Single-image deraining is rather challenging due to the unknown rain model. Existing methods often make specific assumptions of the rain model, which can hardly cover many diverse circumstances in the real world, making them have to employ complex optimization or progressive refinement. This, however, significantly affects these methods' efficiency and effectiveness for many efficiency-critical applications. To fill this gap, in this paper, we regard the single-image deraining as a general image-enhancing problem and originally propose a model-free deraining method, i.e., EfficientDeRain, which is able to process a rainy image within 10~ms (i.e., around 6~ms on average), over 80 times faster than the state-of-the-art method (i.e., RCDNet), while achieving similar de-rain effects. We first propose the novel pixel-wise dilation filtering. In particular, a rainy image is filtered with the pixel-wise kernels estimated from a kernel prediction network, by which suitable multi-scale kernels for each pixel can be efficiently predicted. Then, to eliminate the gap between synthetic and real data, we further propose an effective data augmentation method (i.e., RainMix) that helps to train network for real rainy image handling.We perform comprehensive evaluation on both synthetic and real-world rainy datasets to demonstrate the effectiveness and efficiency of our method. We release the model and code in https://github.com/tsingqguo/efficientderain.git.