论文标题

通过预培训进行推荐的知识转移:审查和潜在客户

Knowledge Transfer via Pre-training for Recommendation: A Review and Prospect

论文作者

Zeng, Zheni, Xiao, Chaojun, Yao, Yuan, Xie, Ruobing, Liu, Zhiyuan, Lin, Fen, Lin, Leyu, Sun, Maosong

论文摘要

推荐系统的目的是为用户提供项目建议,并且通常面临着现实情况下的数据稀疏问题(例如,冷启动)。最近,预训练的模型显示了它们在域和任务之间的知识转移方面的有效性,这可能会缓解推荐系统中的数据稀疏问题。在这项调查中,我们首先对具有预训练的推荐系统进行审查。此外,我们通过实验展示了预培训对推荐系统的好处。最后,我们讨论了一些有前途的研究指导,以供预先培训的推荐系统进行未来的研究。

Recommender systems aim to provide item recommendations for users, and are usually faced with data sparsity problem (e.g., cold start) in real-world scenarios. Recently pre-trained models have shown their effectiveness in knowledge transfer between domains and tasks, which can potentially alleviate the data sparsity problem in recommender systems. In this survey, we first provide a review of recommender systems with pre-training. In addition, we show the benefits of pre-training to recommender systems through experiments. Finally, we discuss several promising directions for future research for recommender systems with pre-training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源