论文标题

使用预训练和射击的几次学习,并富含预训练的样品

Few-shot learning using pre-training and shots, enriched by pre-trained samples

论文作者

Schmicker, Detlef

论文摘要

我们使用手写数字的EMNIST数据集来测试一种简单的方法,以进行几次学习。完全连接的神经网络已通过10位数字的子集进行预训练,并用于未经训练的数字进行几次学习。引入了两个基本想法:在几次学习期间,学习第一层的学习是禁用的,并且对于每次镜头,先前未知的数字都将与四个先前训练的数字一起使用,直到满足预定义的阈值条件为止。这样,我们在10张照片后达到了约90%的精度。

We use the EMNIST dataset of handwritten digits to test a simple approach for few-shot learning. A fully connected neural network is pre-trained with a subset of the 10 digits and used for few-shot learning with untrained digits. Two basic ideas are introduced: during few-shot learning the learning of the first layer is disabled, and for every shot a previously unknown digit is used together with four previously trained digits for the gradient descend, until a predefined threshold condition is fulfilled. This way we reach about 90% accuracy after 10 shots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源