论文标题

在ICUB上实现的神经形态处理器上的闭环尖峰控制

Closed-loop spiking control on a neuromorphic processor implemented on the iCub

论文作者

Zhao, Jingyue, Risi, Nicoletta, Monforte, Marco, Bartolozzi, Chiara, Indiveri, Giacomo, Donati, Elisa

论文摘要

尽管神经形态工程有望部署低潜伏期,适应性和低功率系统,这些系统可以导致真正的自主人造代理的设计,但仍缺少完全神经型人工制剂的发展。尽管神经形态感测和感知以及决策系统现在已经成熟,但控制和致动部分却落后。在本文中,我们提出了使用尖峰神经网络在混合信号模数神经形态硬件上实现的闭环电机控制器。该网络通过使用尖峰关系网络编码目标,反馈和错误信号来执行比例控制动作。它通过连接模式不断地计算误差,该连接模式通过馈送方式连接将三个变量联系起来。每个人群内的复发连接用于加快收敛速度​​,降低不匹配的效果并提高选择性。神经形态电机控制器与ICUB机器人模拟器连接。我们在单个关节控制任务中测试了尖峰P控制器,特别是针对机器人头偏航的。尖峰控制器发送目标位置,从编码器中读取电动机状态,并将电动机命令寄回接头。在一项步骤响应实验和目标追求任务中测试了尖峰控制器的性能。在这项工作中,我们优化了网络结构,以使其对嘈杂的输入和设备不匹配更强大,从而可以更好地控制性能。

Despite neuromorphic engineering promises the deployment of low latency, adaptive and low power systems that can lead to the design of truly autonomous artificial agents, the development of a fully neuromorphic artificial agent is still missing. While neuromorphic sensing and perception, as well as decision-making systems, are now mature, the control and actuation part is lagging behind. In this paper, we present a closed-loop motor controller implemented on mixed-signal analog-digital neuromorphic hardware using a spiking neural network. The network performs a proportional control action by encoding target, feedback, and error signals using a spiking relational network. It continuously calculates the error through a connectivity pattern, which relates the three variables by means of feed-forward connections. Recurrent connections within each population are used to speed up the convergence, decrease the effect of mismatch and improve selectivity. The neuromorphic motor controller is interfaced with the iCub robot simulator. We tested our spiking P controller in a single joint control task, specifically for the robot head yaw. The spiking controller sends the target positions, reads the motor state from its encoder, and sends back the motor commands to the joint. The performance of the spiking controller is tested in a step response experiment and in a target pursuit task. In this work, we optimize the network structure to make it more robust to noisy inputs and device mismatch, which leads to better control performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源