论文标题

从Bitstream和Pixel功能学习

Referenceless Rate-Distortion Modeling with Learning from Bitstream and Pixel Features

论文作者

Sun, Yangfan, Li, Li, Li, Zhu, Liu, Shan

论文摘要

通常,可以通过多通编码来获得可变Internet带宽的自适应比特率。与多通用编码相比,基于引用预测的方法显示出实用的好处,以避免过度的计算资源消耗,尤其是在低延迟情况下。但是,由于现代编解码器的复杂内部结构,大多数人无法准确预测。因此,为了提高预测的保真度,我们提出了一种基于无引用预测的R-QP建模(PMR-QP)方法来估计比特率,通过利用仅使用一个通用编码的深度学习算法来估算比特率。它完善了有关灵活性和适用性的现代编解码器中的全球速率控制范式,但很少进行调整。通过从一通编码的先决条件中探索Bitstream和Pixel特征的潜力,它可以按精度达到比特率估计的期望。更具体地说,我们首先将R-QP关系曲线描述为源自基于Cauchy的分布的强大二次R-QP建模函数。其次,我们通过固定从编码过程中接收到的关系曲线的一个操作点来简化建模功能。第三,我们从Bitstream和Pixel功能中学习模型参数,将其命名为Hybrid无引用功能,包括纹理信息,分层编码结构以及预测内的选定模式。广泛的实验表明,所提出的方法显着降低了样品在10%以内的比特估计误差的比例,平均是24.60%。

Generally, adaptive bitrates for variable Internet bandwidths can be obtained through multi-pass coding. Referenceless prediction-based methods show practical benefits compared with multi-pass coding to avoid excessive computational resource consumption, especially in low-latency circumstances. However, most of them fail to predict precisely due to the complex inner structure of modern codecs. Therefore, to improve the fidelity of prediction, we propose a referenceless prediction-based R-QP modeling (PmR-QP) method to estimate bitrate by leveraging a deep learning algorithm with only one-pass coding. It refines the global rate-control paradigm in modern codecs on flexibility and applicability with few adjustments as possible. By exploring the potentials of bitstream and pixel features from the prerequisite of one-pass coding, it can reach the expectation of bitrate estimation in terms of precision. To be more specific, we first describe the R-QP relationship curve as a robust quadratic R-QP modeling function derived from the Cauchy-based distribution. Second, we simplify the modeling function by fastening one operational point of the relationship curve received from the coding process. Third, we learn the model parameters from bitstream and pixel features, named them hybrid referenceless features, comprising texture information, hierarchical coding structure, and selected modes in intra-prediction. Extensive experiments demonstrate the proposed method significantly decreases the proportion of samples' bitrate estimation error within 10% by 24.60% on average over the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源